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We investigate the periodic modes of motion in a system of objects with one 

degree of freedom, interacting through weak couplings, when in the absence of 

the couplings the objects perform periodic motions with frequencies which are 

the multiples of some value (the case of multiple synchronization Cl]). We con- 
sider a system with a multidimensional rapidly-rotating phase, describing the 

interaction of nonlinear alm~t-conservative objects. We study the case, called 
“nonsimple” in [I], when the first-approximation periodicity conditions determine 

the connection only between the generating phases of the objects moving with 
like frequencies, while the connection between the phases of groups of objects 

having unequal frequencies are determined from the second-approximation per- 
iodicity conditions, We derive the necessary and sufficient stability conditions 

for the modes found. The multiple synchronization of mechanical vibrators in 

the “simple” case have been studied by the sma~-parameter method in @J. A 
survey of other papers which study actual engineering objects by primarily asym- 

ptotic methods has been presented in [l]. 

1, Let us consider the problem of the interaction of nonlinear objects with weak 
couplings in the absence of an external force, described by the following system with a 
multidimensional rapidly-rotating phase: 

‘ps’ = 0, $- p xs(l) (‘p 1, * * ‘, %t WI, ’ * *, %I, v) A- 
-f- p2x!2’ (rp,, - . ., ‘iI*, wl, . . .* w,, v) + 0 (pa) 

0,’ = pYi” (‘PI, . . *, ‘pn, 01, . . .) w,, v) + (1.1) 
-I- p2P ((Pl, . * *, TJn, Wl, . . ., w,, v) -t 0 (p3) 

v’ = At- i- F ((~1, . . ., vn, 01, . . ., w,) -I- pF”‘( pl, . . ., y,, wl, . . ., w,, v) -I- 0 (~2) 

Here p > 0 is a small parameter, v, F, J?(t) are N-dimensional vectors, R is an 
N x N square matrix with constant coefficients; Xf), Xi2’, Yp’, Yj”, F, Fil) are 
assumed to be analytic in some region of the space of their arguments and to be 2Jk 
periodic in each of the variables cpr,. . . , Cp,, The problem of the synchronization of quasi- 
conservative objects interacting through weak couplings reduces to equations of form 
(1.1) after a transition to “phase-frequency” variables [3, 41. 

For p = 0 system (1.1) admits of a solution of the form 
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% = v,t + as, 0, = v, 
v = v p1t + al, . . .? v,t + ant vii . * .* %J V-2) 

where v, and a, are constant frequencies and initial phases. For a complete system 
(1.1) we restrict ourselves to seeking the periodic solution, turning into solution (1.2) 

for 1-1 = 0 when all the v, are multiples of some frequency v, i.e. ,v, = n.,v. Suppose 
that there exist r groups of objects in each of which the n, are the same; we denote 
the number of objects in the k th group by 1,. Without loss of generality the numbers 

r%k can be taken as not having common divisors. 
We seek the periodic solution of system (1.1). of period T * %r f v in the form of 

a series in f&,taking (1.2) as the generatirg solution with due regard to the assumptions 
made. The frequency V depends on f_~ and can be represented as the series 

v = 2.(O) + l.&) + @(a) + . . . (1.3) 

whose coefficients are to be determined as we solve the problem. Instead of the variable 
t we introduce the variable tr by the formula 

t1 = (1 + yh”’ -t p2iz’“’ + . . *) t (jiGI __ ,W / p)) ( w 
Then the problem reduces to seeking the &r/v(O)-periodic solution of the new system 

(Pki = #ki + p [xjt'- h%ki] + CL2 [x$' - h'%$' - f/t@' - ?z(1'2)akil $- 0 ($) 
I 
cl+_ = py!g + $[Y$f - h,'"'y$Q + O(p") 

v'=Av+ F+p.F'*' - h"'Av - h'*'F] + 0 (p') (1.5) 

System (1.5) has been written in such a manner that the objects having like frequencies 

in the generating approximation are combined into one group with the index number 
k (8% = 1,..., r), while i (i = I,..., &) denotes the index number of the object within 
the group, 

When solving system (1.5) by the small-parameter method, all the approximations 
for the functions (9ki and O;;i are determined, obviously, to within additive constants 
which can be considered as the corresponding higher-order components of the generating 

phases and frequencies. Therefore, right away we can seek the phases and frequencies 
in the form of series in p with constant coefficients (see [5f, Chap.111). Thus, finally, 
we seek the solution of system (1.5) in the form 

where v(s) represents the solution of the equation 

V '"' = AV'?' + F (nit + a;;‘, . . . , n,z + @) P (1.6) 

which is &r-periodic in the dimensionless time ‘t = v(O).&. The first-approximation 
periodicity conditions 

‘Lx 

Pg) (a$ * . ', czp, vf@f,vg,. . ., vi+ & s ~~~))~~ - 0 (1.7) 
0 

together with the conditions 

v)$ = n,v (!I) (i=l,,.., lk; k=l,...rI.) (1.8) 



yield a system of equations for determining the generating phases o,g’ and the initial 
approximation ~(0) for the frequency. Here and subsequently, parantheses around func- 

tions and derivatives signify that they are computed at the generating solution. 

If system (1.7) together with conditions (1.8) admits of a simple solution relative to 

the 1, -t . . . + 1,. - ‘l phases (since the initial system is autonomous, one of the 
phases is arbitrary and can be taken equal to zero) and to the frequency Y(U), then the 
multiple synchronization problem is practically not different from the simple synchron- 

ization problem Cl]. Therefore, in what follows we examine the particular case, impor- 
tant for solving applied problems (especially the problem of the multiple synchronization 

(0) of mechanical vibrators), when the functions Pi!,’ do not depend on those CL,,, and ~1:) 

for which p j; k 

Pfi’ = P$’ (UgJ, . . .) UC,,, d”), vg’, . . .) vf?J (1.9) 

In other words, we consider the case when from the first-approximation periodicity con- 
ditions there is established only the synchronization conditions for objects moving with 
like frequencies (the conditions for simple synchronization). Thus, system (1.7) breaks 

up into r independent systems each of which permits the determiration of 1, - 1 gen- 

erating phases to within additive constants o.fP), arbitrary in this approximation. The 

values of the frequency v(O), determined here from each system, are taken to be equal 

in correspondence with the assumptions made. 
To determine the constants af’ we consider the following approximation to the un- 

known functions. From the second-approximation periodicity condition we obtain 

+i 
Ef ) @)c$ + $;)] + ( “;; ) v(1) - P(Y$) + (Y@)dIY = 0 (1.10) 

where Pp> are functions of all a:/ and v:,’ as well as of a(“) not determined in the 

first approximation. The functions Pit) can be represented a: the sum of two term&one 
of which does not depend on a$,while the other is a linear function of a$ 

Consequently, for finding the constants a$ we have the r linear systems 
‘h 

(l.lf) 
J-1 

whose determinants equal zero. Therefore, for the systems to be solvable relative to 
ag.) it is necessary that the equalities l li 
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be satisfied. In (1.12) the a; denote the solutions of the systems 

‘k 
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(1.13) 

System (1.12). supplemented by the conditions Y$\’ = nk&), serves to determine the 
first approximation to the frequency and to the constants ccp’ one of which is arbitrary 

by virtue of the autonomous property of the system. 

2, Going over to the investigation of the stability of the solutions found, we set up 
the variational equations of system (1.5). These equations represent a linear system with 

( 2n / Y(O)) - periodic coefficients whose 2 (Ii + . . . + I,) characteristic indices vanish 

for p = 0 . The stability of the solutions found is determined by the signs of the real 

parts of these so-called “critical” indices [4]. Therefore, we restrict ourselves only to 

looking for these. We represent the perturbations 6~,~, 6oki, 6v as 

&Tki = ehf%ki, 6Wki = ehf’gki, 6V == eht’w (2.4) 

where 6,i (hh $ki (h), w ( tl) are ( 2n / ~(0) ) - periodic functions, while the critical 
indices h = h (CL) can be expanded into a series in powers of p’l* 

h = h, y’/a + hap + . . . (2.2) 

The successive approximations of the characteristic indices are sought during the construc- 
tion of the ( 2n 1 v(O) ) - periodic solutions of the variational system as series in powers 
of i.l”Z with ( 2n / Y(O) ) - periodic coefficients. As a result of the corresponding calcu- 

lations, on which we do not dwell here, we arrive at the following results. 
The first approximations to the characteristic indices are the roots of the equations 

1 hkij 1 = 0, (hkij = 8.P;’ / 8x8) - hf6ii) (2.3 

Each of these equations has a double zero root; the remaining root of each equation is 
assumed to be simple and nonzero. For the nonzero h, the corresponding second approx- 
imations to the characteristic indices are f4] 

0 

(2.4) 

where ski and Uki * are the solutions of the conjugate systems 
‘k ‘k 

hkijakj = 0, (2.5) 
j=1 i=1 

moreover, we assume that the vectors ak and ok* are chosen so that 

i=l 

For those same characteristic indices for which the first apgoximations h, = 0, the 
quantities hs are determined from the equation 
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- h,Y& = 0 I (k, p = 1,. . ., r) (2.7) 

The functions 6ki in (2.4) and (2.7) are expressed in terms of do) in accordance with 
the relation [4] 

r¶b = v (0) #&) 

ad@ ac@ (2.8) 

The multiple synchronization mode being in - 
vestigated is stable if 

A,= < 0, Reh,<O 

for all roots of Eqs. (2.3) and (2.7). Here one 

root of Eq. (2.7) equals zero, as must be for 
an autonomous system. 

8, Let us consider the problem of the double synchronization of two pairs of unbala- 
nced vibrators fixed on a rigid body which can accomplish translational oscillations 
(Fig. 1). The equations of motion of such a system have the form (see [ 1, 61 regarding 

the introduction of the small parameter) 

qki 
* = Oki 

Oki = pk iLki (Wki) f se . mki”kiz “* (Pki + mki ‘kig hn (‘pki - x)] (k, i = 1, 2) 

2 

Ms” + c5 = 2 mki Eki (oki’ain (ph_i + ok.* cos (pki) z (3.0 
k. i=l 

where mki, eki, Iki, tk( are the mass, the eccentricity, the moment of inertia, and 
the shaft torque of the i th unbalance in the kth group; M, c are the mass of the 

system and the rigidity of the elastic coupling, x is the angle between the direction of 
the rigid body’s motion and the vertical. The vibrators in each pair are considered alike, 

i. e. ml1 = ml, = ml, e11 = e12 = e,, -5, = L,, = L,, z,, = z,, = z, 

m a1 = msa = 9, e21 = et2 = e,, &I = L,, = L,, I,, = 122 = I, 

We seek the existence conditions and the stability of the mode when the vibrators of 

the first pair rotate with an angular speed half that of the vibrators of the second pair. 
The first-approximation periodicity conditions for 2~;) = 2v$ = vg)=vg) = 2v(sJ lead 
to the equations Ll(Y(O)) = 0, La (2X@)) = 0 

sin (a’,“2 - a:),:‘, = 0 (3.2) 

For the existence of the mode being sought it is necessary that the equations for deter- 

mining the frequencies admit of similar solutions. We further restrict ourselves to study- 
ing the case when the vibrators in each pair move coherently 

Then 
(0) Ull = aI2 = 

CO! (O) al 1 a21 
(0) = @g) = 3’20’ (3.3) 
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!2) 
0, =- 

8m4.s2ml%$gv(")' 

M1112(p - 4v@)‘) 

2vjQ = 2v&) = v’zi’ I: 
11 

v ;;) = 2vfl) 
(3.4) 

Usually f&&k I d@kj) < 0 and, therefore, v(t) = 0, and the equation connecting the con- 

stants ai*) and Go) is obtained in the form 

(0) cos (2al ula~L.-_)=O 

whence2~)-_)=~+nf2or2~)-a(,O)=X+3n/2. 

From the stability conditions of the first group (ha < 0) it follows that the phasing 

(3.4) is stable if? > 4v(‘)’ Relations (2.4) lead to the requirement [6] that (f&/d@kj)< 
<O. Finally, the condition that the roots of Eq. (2 7) be negative shows that for Ps > 
> 4v@)* the mode is stable when 2czy) - 4”) = x $- 3x / 2. We take the initial phases 

of the rotation of the vibrators of the first pair, o$J and ag) equal to zero. Then the 
law of oscillations z (t) of the rigid body is 

2m1alv2 8maa2va 
5=M(pz_yS;) cosvj+M(P2_4v2) cos ( 3n 

2vt-XX-_ 1 +0(p)= 

2mmvz 8maed 
= M tp2 _ +) Cos vt - M cp2 _ /iv3 sin W - x) + 0 (p) (3.5) 

where v = v(O) f 0 (p2) The other solutions of Eq. (3.2) are investigated analogo~ly, 

The author thanks I. I. Blekhman for discussing the results and for valuable advice. 
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